Part Number Hot Search : 
40L15CW AD840 PAM8008 GL620T 682M16 MAC223A4 7107CPL M5221
Product Description
Full Text Search
 

To Download HMT351S6EFR8A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev. 1.2 / sep. 2013 1 204pin ddr3l sdram sodimm ddr3l sdram unbuffered sodimms based on 2gb e-die hmt325s6efr8a HMT351S6EFR8A *sk hynix reserves the right to change pr oducts or specifications without notice.
rev. 1.2 /sep. 2013 2 revision history revision no. history draft date remark 1.0 initial release jun. 2012 1.1 idd5b spec modified nov. 2012 1.2 changed module maximum thickness to reflect the measured maximum sep. 2013
rev. 1.2 /sep. 2013 3 description sk hynix unbuffered ddr3l sdram dimms (unbuffere d double data rate synchronous dram dual in- line memory modules) are low power, high-speed operation memory modules that use ddr3l sdram devices. these unbuffered ddr3l sdram dimms are inte nded for use as main memory when installed in systems such as mobile personal computers. features ? power supply: vdd=1.35v (1.283v to 1.45v) ? vddq = 1.35v (1.283v to 1.45v) ? vddspd=3.0v to 3.6v ? backward compatible with 1.5v ddr3 memory module ? 8 internal banks ? data transfer rates:pc3-12800, pc3-10600, pc3-8500 ? bi-directional differential data strobe ? 8 bit pre-fetch ? burst length (bl) switch on-the-fly: bl 8 or bc (burst chop) 4 ? on die termination (odt) supported ? this product is in compliance with the rohs directive ordering information part number density organization component composition # of ranks hmt325s6efr8a-g7/h9/pb 2gb 256mx64 256mx8(h5tc2g83efr)*8 1
rev. 1.2 /sep. 2013 4 key parameters *sk hynix dram devices support optional downbinning to cl11, cl9 and cl7. spd setting is programmed to match. speed grade address table mt/s grade tck (ns) cas latency (tck) trcd (ns) trp (ns) tras (ns) trc (ns) cl-trcd-trp ddr3l-1066 -g7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 ddr3l-1333 -h9 1.5 9 13.5 (13.125)* 13.5 (13.125)* 36 49.5 (49.125)* 9-9-9 ddr3l-1600 -pb 1.25 11 13.75 (13.125)* 13.75 (13.125)* 35 48.75 (48.125)* 11-11-11 grade frequency [mhz] remark cl5 cl6 cl7 cl8 cl9 cl10 cl11 -g7 667 800 1066 1066 -h9 667 800 1066 1066 1333 1333 -pb 667 800 1066 1066 1333 1333 1600 2gb(1rx8) 4gb(2rx8) refresh method 8k/64ms 8k/64ms row address a0-a14 a0-a14 column address a0-a9 a0-a9 bank address ba0-ba2 ba0-ba2 page size 1kb 1kb
rev. 1.2 /sep. 2013 5 pin descriptions pin name description num ber pin name description num ber ck[1:0] clock input, positive line 2 dq[63:0] data input/output 64 ck [1:0] clock input, negative line 2 dm[7:0] data masks 8 cke[1:0] clock enables 2 dqs[7:0] data strobes 8 ras row address strobe 1 dqs [7:0] data strobes, negative line 8 cas column address strobe 1 event temperature event pin 1 we write enable 1 test logic analyzer specific test pin (no connect on sodimm) 1 s [1:0] chip selects 2 reset reset pin 1 a[9:0],a11, a[15:13] address inputs 14 v dd core and i/o power 18 a10/ap address input/autoprecharge 1 v ss ground 52 a12/bc address input/burst chop 1 ba[2:0] sdram bank addresses 3 v refdq input/output reference 1 odt[1:0] on die termination inputs 2 v refca 1 scl serial presence detect (spd) clock input 1 v tt termination voltage 2 sda spd data input/output 1 v ddspd spd power 1 sa[1:0] spd address inputs 2 nc reserved for future use 2 total: 204
rev. 1.2 /sep. 2013 6 input/output functional descriptions symbol type polarity function ck0/ck0 ck1/ck1 in cross point the system clock inputs. all address and co mmand lines are sample d on the cross point of the rising edge of ck and falling edge of ck . a delay locked loop (dll) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock. cke[1:0] in active high activates the ddr3 sdram ck signal when high and deactivates the ck signal when low. by deactivating the clocks, cke low initiates the power down mode or the self refresh mode. s [1:0] in active low enables the associated ddr3 sdram command decoder when low and disables the command decoder when high. when the co mmand decoder is disabled, new commands are ignored but previous operations continue. rank 0 is selected by s0 ; rank 1 is selected by s1 . odt[1:0] in active high asserts on-die termination for dq, dm, dqs, and dqs signals if enab led via the ddr3 sdram mode register. r as , cas , we in active low when sampled at the cross point of the rising edge of ck, signals cas , ras , and we define the operation to be executed by the sdram. v refdq v refca supply reference voltage for sstl15 inputs. ba[2:0] in ? selects which sdram internal bank of eight is activated. a[9:0], a10/ap, a11, a12/bc a[15:13] in ? during a bank activate command cycle, de fines the row address when sampled at the cross point of the rising edge of ck and falling edge of ck . during a read of write com- mand cycle, defines the column address when sampled at the cross point of the rising edge of ck and falling edge of ck . in addition to the column address, ap is used to invoke autoprecharge operation at the end of th e burst read or write cycle. if ap is high autoprecharge is selected and ba0-ban defines the bank to be precharged. if ap is low, autoprecharge is disabled. duri ng a precharge command cycle, ap is used in conjunction with ba0-ban to control which bank(s) to precharge. if ap is high, all banks will be pre- charged regardless of the state of ba0-ban inputs. if ap is low, then ba0-ban are used to define which bank to precharge. a12(bc ) is samples during read and write com- mands to determine if burst chop (on-the-fl y) will be performed (high, no burst chop: low, burst chopped). dq[63:0] i/o ? data input/output pins. dm[7:0] in active high the data write masks, associated with one da ta byte. in write mode , dm operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. in read mode, dm lines have no effect. v dd , v ddspd v ss supply power supplies for core, i/o, serial presence detect, and ground for the module. dqs[7:0], dqs[7:0] i/o cross point the data strobes, associated with one data byte, sourced with data transfers. in write mode, the data strobe is sourced by the cont roller and is centered in the data window. in read mode, the data strobe is sourced by the ddr3 sdrams and is sent at the lead- ing edge of the data window. dqs signals are complements, and timing is relative to the crosspoint of respective dqs and dqs . sa[1:0] in ? these signals are tied at the system planar to either v ss or v ddspd to configure the serial spd eeprom address range.
rev. 1.2 /sep. 2013 7 sda i/o ? this bidirectional pin is used to transfer data into or out of the spd eeprom. a resistor must be connected from the sda bus line to v ddspd on the system pl anar to act as a pullup. scl in ? this signal is used to clock data into and out of the spd eeprom. a resistor may be con- nected from the scl bus time to v ddspd on the system planar to act as a pullup. event out (open drain) active low this signal indicates that a thermal event has been detected in the thermal sensing device.the system should guarantee the el ectrical level requirement is met for the event pin on ts/spd part. no pull-up resister is provided on dimm. v ddspd supply serial eeprom positive power supply wired to a separate power pin at the connector which supports from 3.0 volt to 3.6 volt (nominal 3.3v) operation. reset in the reset pin is connected to the reset pin on the register and to the reset pin on the dram. test used by memory bus analysis tools (unused (nc) on memory dimms) symbol type polarity function
rev. 1.2 /sep. 2013 8 pin assignments pin # front side pin # back side pin # front side pin # back side pin # front side pin # back side pin # front side pin # back side 1 v ref dq 2 v ss 53 dq19 54 v ss 105 v dd 106 v dd 157 dq42 158 dq46 3 v ss 4 dq4 55 v ss 56 dq28 107 a10/ap 108 ba1 159 dq43 160 dq47 5 dq0 6 dq5 57 dq24 58 dq29 109 ba0 110 ras 161 v ss 162 v ss 7dq18 v ss 59 dq25 60 v ss 111 v dd 112 v dd 163 dq48 164 dq52 9 v ss 10 dqs 0 61 v ss 62 dqs 3 113 we 114 s 0 165 dq49 166 dq53 11 dm0 12 dqs0 63 dm3 64 dqs3 115 cas 116 odt0 167 v ss 168 v ss 13 v ss 14 v ss 65 v ss 66 v ss 117 v dd 118 v dd 169 dqs 6 170 dm6 15 dq2 16 dq6 67 dq26 68 dq30 119 a13 2 120 odt1 171 dqs6 172 v ss 17 dq3 18 dq7 69 dq27 70 dq31 121 s 1 122 nc 173 v ss 174 dq54 19 v ss 20 v ss 71 v ss 72 v ss 123 v dd 124 v dd 175 dq50 176 dq55 21 dq8 22 dq12 73 cke0 74 cke1 125 test 126 v ref ca 177 dq51 178 v ss 23 dq9 24 dq13 75 v dd 76 v dd 127 v ss 128 v ss 179 v ss 180 dq60 25 v ss 26 v ss 77 nc 78 a15 2 129 dq32 130 dq36 181 dq56 182 dq61 27 dqs 1 28 dm1 79 ba2 80 a14 2 131 dq33 132 dq37 183 dq57 184 v ss 29 dqs1 30 reset 81 v dd 82 v dd 133 v ss 134 v ss 185 v ss 186 dqs 7 31 v ss 32 v ss 83 a12/bc 84 a11 135 dqs 4 136 dm4 187 dm7 188 dqs7 33 dq10 34 dq14 85 a9 86 a7 137 dqs4 138 v ss 189 v ss 190 v ss 35 dq11 36 dq15 87 v dd 88 v dd 139 v ss 140 dq38 191 dq58 192 dq62 37 v ss 38 v ss 89 a8 90 a6 141 dq34 142 dq39 193 dq59 194 dq63 39 dq16 40 dq20 91 a5 92 a4 143 dq35 144 v ss 195 v ss 196 v ss 41 dq17 42 dq21 93 v dd 94 v dd 145 v ss 146 dq44 197 sa0 198 event 43 v ss 44 v ss 95 a3 96 a2 147 dq40 148 dq45 199 vdd spd 200 sda 45 dqs 2 46 dm2 97 a1 98 a0 149 dq41 150 v ss 201 sa1 202 scl 47 dqs2 48 v ss 99 v dd 100 v dd 151 v ss 152 dqs 5 203 v tt 204 v tt 49 v ss 50 dq22 101 ck0 102 ck1 153 dm5 154 dqs5 51 dq18 52 dq23 103 ck0 104 ck1 155 v ss 156 v ss nc = no connect; rfu = reserved future use 1. test (pin 125) is reserved for bus analysis probes and is nc on normal memory modules. 2. this address might be connected to nc balls of the dram s (depending on density); ei ther way they will be con- nected to the termination resistor.
rev. 1.2 /sep. 2013 9 functional block diagram 2gb, 256mx64 module( 1 rank of x 8) notes 1. dq wiring may differ from that shown however, dq, dm, dqs, and dqs relationships are maintained as shown address and control lines rank 0 the spd may be integrated with the temp sensor or may be a separate component d0 d1 d2 d3 vtt d4 d5 d6 d7 vtt v1 v2 v4 v3 v1 v2 v4 v3 cke1 event reset temp sensor d0-d7 nc terminated near card edge
rev. 1.2 /sep. 2013 10 4gb, 512mx64 modu le(2rank of x8) dqs3 dqs3 dm3 dq[24:31] dqs dqs dm dq [0:7] d11 ras cas s1 we ck1 ck1 cke1 odt1 a[o:n]/ba[o:n] 240ohm zq +/-1% vtt ras cas cs we ck ck cke odt a[o:n]/ba[o:n] ldqs ldqs ldm dq [0:7] d3 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] ck0 ck0 cke0 odt0 s0 a2 tem p s e ns o r sda d0?d15 v dd spd spd/ts d0?d15 v ref ca scl v tt d0?d15 v dd event a1 a0 scl sa0 sa1 (with spd) event a2 sda scl wp a1 a0 scl sa0 sa1 (spd) v tt v ref dq v ss ck0 ck0 ck1 ck1 cke0 cke1 d0?d15, spd, temp sensor d0?d7 d8?d15 d0-d7 d8-d15 notes 1. dq wiring may differ from that shown however, dq, dm, dqs, and dqs rela- tionships are maintained as shown rank 0 d0?d7 d8?d15 rank 1 dqs1 dqs1 dm1 dq[8:15] dqs dqs dm dq [0:7] d1 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] ldqs ldqs ldm dq [0:7] d9 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] dqs0 dqs0 dm0 dq[0:7] dqs dqs dm dq [0:7] d0 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] ldqs ldqs ldm dq [0:7] d8 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] dqs4 dqs4 dm4 dq[32:39] dqs6 dqs6 dm6 dq[48:55] dqs7 dqs7 dm7 dq[56:43] dqs5 dqs5 dm5 dq[40:47] vtt vtt vdd vdd cterm cterm d12 d4 dqs dqs dm dq [0:7] 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] dqs dqs dm dq [0:7] 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] d6 d14 dqs dqs dm dq [0:7] zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] dqs dqs dm dq [0:7] zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] 240ohm 240ohm d7 d15 dqs dqs dm dq [0:7] zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] dqs dqs dm dq [0:7] zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] 240ohm 240ohm dqs2 dqs2 dm2 dq[6:23] dqs dqs dm dq [0:7] d2 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] ldqs ldqs ldm dq [0:7] d10 240ohm zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] d5 d13 dqs dqs dm dq [0:7] zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] dqs dqs dm dq [0:7] zq +/-1% ras cas cs we ck ck cke odt a[o:n]/ba[o:n] 240ohm 240ohm s0 odt0 s1 odt1 event reset d0?d7 d8?d15 temp sensor d0-d15 d0?d7 d8?d15 the spd may be integrated with the temp sensor or may be a separate component d0 v9 d1 d11 d2 d14 d15 d9 d8 d10 d3 d12 d5 d7 d6 vtt v1 v2 v3 v4 v5 v6 v8 v7 v6 v8 v7 v5 v9 v1 v4 v3 v2 d13 d4
rev. 1.2 /sep. 2013 11 absolute maximum ratings absolute maximum dc ratings notes: 1. stresses greater than those listed under ?absolute maximum ratings? may cause permanent damage to the device. this is a stress rating only and functional operat ion of the device at these or any other conditions above those indicated in the operational sections of this specif ication is not implied. exposure to absolute maximum rat - ing conditions for extended pe riods may affect reliability. 2. storage temperature is the case surface temperature on the center/top side of the dram. for the measurement conditions, please refer to jesd51-2 standard. 3. vdd and vddq must be within 300mv of each other at all times; and vref must not be greater than 0.6xvddq,when vdd and vddq are less than 500mv; vref may be equal to or less than 300mv. ? dram component operat ing temperature range notes: 1. operating temperature toper is the case surface temperature on the center / top side of the dram. for mea - surement conditions, please refer to the jedec document jesd51-2. 2. the normal temperature range specifies the temperatures where all dram specificatio ns will be supported. dur - ing operation, the dram case temperature must be maintained between 0 - 85 o c under all operating conditions. 3. some applications require operation of the dr am in the extended temperature range between 85 o c and 95 o c case temperature. full specifications are guaranteed in this range, but the following additional conditions apply: a. refresh commands must be doubled in frequency, theref ore reducing the refresh interval trefi to 3.9 s. it is also possible to specify a component with 1x refres h (trefi to 7.8s) in the extended temperature range. please refer to the dimm spd for option availability b. if self-refresh operation is required in the extended temperature range, then it is mandatory to use the manual self-refresh mode with extended temperature range capability (mr2 a6 = 0b and mr2 a7 = 1b). ddr3 sdrams support extended temperature range an d please refer to compon ent datasheet and/or the dimm spd for tfefi requirements in the extended temperature range. absolute maximum dc ratings symbol parameter rating units notes vdd voltage on vdd pin relative to vss - 0.4 v ~ 1.8 v v 1, 3 vddq voltage on vddq pin relative to vss - 0.4 v ~ 1.8 v v 1, 3 v in , v out voltage on any pin relative to vss - 0.4 v ~ 1.8 v v 1 t stg storage temperature -55 to +100 o c1, 2 temperature range symbol parameter rating units notes t oper normal operating temperature range 0 to 85 o c 1,2 extended temperature range 85 to 95 o c1,3
rev. 1.2 /sep. 2013 12 ac & dc operating conditions recommended dc operating conditions recommended dc operating conditions - ddr3l (1.35v) operation symbol parameter rating units notes min. typ. max. vdd supply voltage 1.283 1.35 1.45 v 1,2,3,4 vddq supply voltage for output 1.283 1.35 1.45 v 1,2,3,4 notes: 1. maximum dc value may not be greater than 1.425v. the dc value is the linear average of vdd/vddq (t) over a very long period of time (e.g., 1 sec). 2. if maximum limit is exceeded, input levels shall be governed by ddr3l specifications. 3. under these supply voltages, the device operates to this ddr3l specification. 4. once initialized for ddr3l operation, ddr3 operation may only be used if the device is in reset while vdd and vddq are changed for ddr3 operation (see figure 0). recommended dc operating condit ions - ddr3 (1.5v) operation symbol parameter rating units notes min. typ. max. vdd supply voltage 1.425 1.5 1.575 v 1,2,3 vddq supply voltage for output 1.425 1.5 1.575 v 1,2,3 notes: 1. if minimum limit is exceeded, input levels shall be governed by ddr3l specifications. 2. under 1.5v operation, this ddr3l device operates to the ddr3 specifications under the same speed timings as defined for this device. 3. once initialized for ddr3 operation, ddr3l operation may only be used if the device is in reset while vdd and vddq are changed for ddr3l operation (see figure 0).
rev. 1.2 /sep. 2013 13 figure 0 - vdd/vddq voltage switch between ddr3l and ddr3 note 1: from time point
rev. 1.2 /sep. 2013 14 aac & dc input measurement levels ac and dc logic input levels for single-ended signals ac and dc input levels for single -ended command and address signals notes: 1. for input only pins except reset , vref = vrefca (dc). 2. refer to "overshoot and undershoot specifications" on page 27. 3. the ac peak noise on v ref may not allow v ref to deviate from v refca(dc) by more than +/-1% vdd (for refer - ence: approx. +/- 13.5 mv). 4. for reference: approx. vdd/2 +/- 13.5 mv 5. these levels apply for 1.35 volt (see table above) op eration only. if the device is operated at 1.5v ( table "single ended ac and dc input levels for dq and dm" on page 15 ), the respective levels in jesd79-3 (vih/l.ca(dc100), vih/l.ca(ac175), vih/l.ca(ac150), vih/l.ca(ac135), vi h/l.ca(ac125) etc.) apply. the 1.5v levels (vih/ l.ca(dc100), vih/l.ca(ac175), vih/l. ca(ac150), vih/l.ca(ac135), vih/l.ca (ac125) etc.) do not apply when the device is operated in the 1.35 voltage range. single ended ac and dc input levels for command and address symbol parameter ddr3l-800/1066 ddr3l-1333/1600 unit notes min max min max vih.ca(dc90) dc input logic high vref + 0.09 vdd vref + 0.09 vdd v 1 vil.ca(dc90) dc input logic low vss vref - 0.09 vss vref - 0.09 v 1 vih.ca(ac160) ac input logic high vref + 0.160 note2 vref + 0.160 note2 v 1,2,5 vil.ca(ac160) ac input logic low note2 vref - 0.160 note2 vref - 0.160 v 1,2,5 vih.ca(ac135) ac input logic high vref + 0.135 note2 vref + 0.135 note2 v 1,2,5 vil.ca(ac135) ac input logic low note2 vref - 0.135 note2 vref - 0.135 v 1,2,5 vih.ca(ac125)ac input logic high----v1,2,5 vil.ca(ac125)ac input logic low----v1,2,5 v refca(dc ) reference voltage for add, cmd inputs 0.49 * vdd 0.51 * vdd 0.4 9 * vdd 0.51 * vdd v 3,4
rev. 1.2 /sep. 2013 15 ac and dc input levels for single-ended signals ddr3 sdram will support two vih/vil ac levels fo r ddr3-800 and ddr3-1066s specified in table below. ddr3 sdram will also support corres ponding tds values (table 43 and table 50 in ?ddr3l device opera- tion?) as well as derating tables table 46 in ?ddr3l device operation? depending on vih/vil ac levels. notes: 1. vref = vrefdq (dc). 2. refer to "overshoot and undershoot specifications" on page 27. 3. the ac peak noise on v ref may not allow v ref to deviate from v refdq(dc) by more than +/-1% vdd (for reference: approx. +/- 13.5 mv). 4. for reference: approx. vdd/2 +/- 13.5 mv 4. for reference: approx. vdd/2 +/- 13.5 mv 5. these levels apply for 1.35 volt ( table "single ended ac and dc input levels for command and address" on page 14 ) operation only. if the device is operated at 1.5v (t able above), the respective levels in jesd79-3 (vih/ l.dq(dc100), vih/l.dq(ac175), vih/l.dq(ac150), vih/ l.dq(ac135) etc.) apply. the 1.5v levels (vih/ l.dq(dc100), vih/l.dq(ac175), vih/l. dq(ac150), vih/l.dq(ac135) etc.) do not apply when the device is operated in the 1.35 voltage range. single ended ac and dc input levels for dq and dm symbol parameter ddr3l-800/1066 ddr3l-1333/1600 unit notes min max min max vih.dq(dc90) dc input logic high vref + 0.09 vdd vref + 0.09 vdd v 1 vil.dq(dc90) dc input logic low vss vref - 0.09 vss vref - 0.09 v 1 vih.dq(ac160) ac input logic high vref + 0.160 note2 - - v 1, 2, 5 vil.dq(ac160) ac input logic low note2 vref - 0.160 - - v 1, 2, 5 vih.dq(ac135) ac input logic high vref + 0.135 note2 vref + 0.135 note2 v 1, 2, 5 vil.dq(ac135) ac input logic low note2 vr ef - 0.135 note2 vref - 0.135 v 1, 2, 5 vih.dq(ac130) ac input logic high - - - - v 1, 2, 5 vil.dq(ac130) ac input logic low - - - - v 1, 2, 5 v refdq(dc ) reference voltage for dq, dm inputs 0.49 * vdd 0.51 * vdd 0.49 * vdd 0.51 * vdd v 3, 4
rev. 1.2 /sep. 2013 16 vref tolerances the dc-tolerance limits and ac-noise limits for the reference voltages vrefca and v refdq are illustrated in figure below. it shows a valid reference voltage v ref (t) as a function of time. (v ref stands for v refca and v refdq likewise). v ref (dc) is the linear average of v ref (t) over a very long period of time (e.g. 1 sec). this average has to meet the min/max requirements in the table "different ial input slew rate defini tion" on page 22. further- more v ref (t) may temporarily deviate from v ref (dc) by no more than +/- 1% vdd. illustration of v ref(dc) tolerance and v ref ac-noise limits the voltage levels for setup and hold time measurements v ih(ac) , v ih(dc) , v il(ac) , and v il(dc) are depen- dent on v ref . ?v ref ? shall be understood as v ref(dc) , as defined in figure above. this clarifies that dc-variations of v ref affect the absolute voltage a sign al has to reach to achieve a valid high or low level and therefore the time to which se tup and hold is measured. system timing and voltage budgets need to account for v ref(dc) deviations from the optimum position within the data-eye of the input signals. this also clarifies that the dram setup/hold specific ation and derating values need to include time and voltage associated with v ref ac-noise. timing and voltage effects due to ac-noise on v ref up to the speci- fied limit (+/- 1% of vdd) are included in dram timings and their associated deratings. vdd vss vdd/2 v ref(dc) v ref ac-noise voltage time v ref(dc)max v ref(dc)min v ref (t)
rev. 1.2 /sep. 2013 17 ac and dc logic input leve ls for differential signals differential signal definition definition of differential ac-swi ng and ?time above ac-level? t dvac time differential input voltage(i.e.dqs - dqs#, ck - ck#) v il.diff.ac.max v il.diff.max 0 v il.diff.min v il.diff.ac.min t dvac half cycle t dvac
rev. 1.2 /sep. 2013 18 differential swing requirem ents for clock (ck - ck ) and strobe (dqs-dqs ) notes: 1. used to define a differential signal slew-rate. 2. for ck - ck use vih/vil (ac) of aadd/cmd and vrefca; for dqs - dqs , dqsl, dqsl , dqsu, dqsu use vih/vil (ac) of dqs and vrefdq; if a reduced ac-high or ac-low le vels is used for a signal group, then the reduced level applies also here. 3. these values are not defined; however, the single-ended signals ck, ck , dqs, dqs , dqsl, dqsl , dqsu, dqsu need to be within the respective limits (vih (dc) max, vil (dc) min) for sing le-ended signals as well as the limita - tions for overshoot and undershoot. refer to "overshoot and undershoot specifications" on page 27. note : rising input signal shall become equal to or greater than vih(ac) level and falling input signal shall become equal to or less than vil(ac) level. differential ac and dc input levels symbol parameter ddr3l-800, 1066, 1333, 1600 unit notes min max v ihdiff differential input high + 0.180 note 3 v 1 v ildiff differential input logic low note 3 - 0.180 v 1 v ihdiff (ac) differential input high ac 2 x (vih (ac) - vref) note 3 v 2 v ildiff (ac) differential input low ac note 3 2 x (vil (ac) - vref) v 2 allowed time before ringback (tdvac) for ck - ck and dqs - dqs slew rate [v/ns] ddr3l-800/1066/1333/1600 tdvac [ps] @ |vih/ldiff (ac)| = 320mv tdvac [ps] @ |vih/ldiff (ac)| = 270mv min max min max > 4.0 189 - 201 - 4.0 189 - 201 - 3.0 162 - 179 - 2.0 109 - 134 1.8 91 - 119 - 1.6 69 - 100 - 1.4 40 - 76 - 1.2 note - 44 - 1.0 note - note - < 1.0 note - note -
rev. 1.2 /sep. 2013 19 single-ended requirements for differential signals each individual component of a differential signal (ck, dqs, dqsl, dqsu, ck , dqs , dqsl , of dqsu ) also has to comply with certain requirements for single-ended signals. ck and ck have to approximately reach vsehmin / vselmax (approximately equal to the ac-levels (vih (ac) / vil (ac)) for add/cmd signals) in every half-cycle. dqs, dqsl, dqsu, dqs , dqsl have to reach vsehmin / vselmax (a pproximately the ac-levels (vih (ac) / vil (ac)) for dq signals) in every half-cyc le preceding and following a valid transition. note that the applicable ac-levels for add/cmd and dq ?s might be different per speed-bin etc. e.g., if vih.ca(ac150)/vil.ca(ac150) is used for add/cmd signal s, then these ac-levels apply also for the single- ended signals ck and ck . single-ended requirements for differential signals. note that, while add/cmd and dq signal requirements are with respect to vref, the single-ended compo- nents of differential signals have a requirement with respect to vdd / 2; this is nominally the same. the transition of single-ended signals through the ac-lev els is used to measure se tup time. for single-ended components of differential signals the requirement to reach vselmax, vsehmin ha s no bearing on timing, but adds a restriction on the common mode characteristics of these signals. vdd or vddq vsehmin vdd/2 or vddq/2 vseh vselmax vss or vssq ck or dqs vsel time
symbol parameter ddr3l-800, 1066, 1333 & 1600 unit notes min max vseh single-ended high level for strobes (vdd / 2) + 0.175 note 3 v 1,2 single-ended high level for ck, ck (vdd /2) + 0.175 note 3 v 1,2 vsel single-ended low level for strobes note 3 (vdd / 2) - 0.175 v 1,2 single-ended low level for ck, ck note 3 (vdd / 2) - 0.175 v 1,2 rev. 1.2 /sep. 2013 20 notes: 1. for ck, ck use vih/vil (ac) of add/cmd; for strobes (dqs, dqs , dqsl, dqsl , dqsu, dqsu ) use vih/vil (ac) of dqs. 2. vih (ac)/vil (ac) for dqs is based on vrefdq; vih (ac) /vil (ac) f or add/cmd is based on vrefca; if a reduced ac-high or ac-low level is used for a signal gr oup, then the reduced level applies also here. 3. these values are not defined; however, the single-ended signals ck, ck , dqs, dqs , dqsl, dqsl , dqsu, dqsu need to be within the respective limits (vih (dc) max, vil (dc) min) for sing le-ended signals as well as the limita - tions for overshoot and undershoot. refer to "overshoot and undershoot specifications" on page 27. single-ended levels for ck, dqs, dqsl, dqsu, ck , dqs , dqsl or dqsu
rev. 1.2 /sep. 2013 21 differential input cross point voltage to guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (ck, ck and dqs, dqs ) must meet the requirements in table below. the differential input cross point voltage vix is measured from the actual cross point of true and complement signals to the midlevel between of vdd and vss vix definition symbol parameter ddr3l-800, 1066, 1333, 1600, 1866 unit notes min max v ix (ck) differential input cross point voltage rela tive to vdd/2 for ck, ck -150 150 mv 2 -175 175 mv 1 v ix (dqs) differential input cross point voltage r elative to vdd/2 for dqs, dqs -150 150 mv 2 notes: 1. extended range for v ix is only allowed for clock and if single-ended clock input signals ck and ck are monotonic with a single-ended swing vsel / vseh of at least vdd/ 2 +/-250 mv, and when the differential slew rate of ck - ck is larger than 3 v/ns. 2. the relation between vix min/max an d vsel/vseh should satisf y following.  (vdd/2) + vix (min) - vsel t 25 mv  vseh - ((vdd/2) + vix (max)) t 25m v cross point voltage for differential input signals (ck, dqs)
rev. 1.2 /sep. 2013 22 slew rate definitions for single-ended input signals see 7.5 ?address / command setup, hold and derating ? in ?ddr3l device operation? for single-ended slew rate definitions for address and command signals.  see 7.6 ?data setup, hold and slew rate derating? in ?ddr3l device operation? for single-ended slew rate definition for data signals. slew rate definitions for differential input signals input slew rate for differential signals (ck, ck and dqs, dqs ) are defined and measur ed as shown in table and figure below. notes: delta tfdiff delta trdiff v ihdiffmin v ildiffmax 0 differential input voltage (i.e. dqs-dqs; ck-ck) the differential signal (i.e. ck-ck and dqs-dqs ) must be linear between these thresholds. differential input slew rate definition for dqs, dqs and ck, ck differential input slew rate definition description measured defined by min max differential input slew rate for rising edge (ck-ck and dqs-dqs ) v ildiffmax v ihdiffmin [v ihdiffmin -v ildiffmax ] / deltatrdiff differential input slew rate for falling edge (ck-ck and dqs-dqs ) v ihdiffmin v ildiffmax [v ihdiffmin -v ildiffmax ] / deltatfdiff
rev. 1.2 /sep. 2013 23 ac & dc output measurement levels single ended ac and dc output levels table below shows the output levels used for measurements of single ended signals. notes: 1. the swing of 0. ? ? differential ac and dc output levels table below shows the output levels used for measurements of single ended signals. notes: 1. the swing of 0.2 ? ? single-ended ac and dc output levels symbol parameter ddr3l-800, 1066, 1333 and 1600 unit notes v oh(dc) dc output high measurement level (for iv curve linearity) 0.8 x v ddq v v om(dc) dc output mid measurement level (for iv curve linearity) 0.5 x v ddq v v ol(dc) dc output low measurement le vel (for iv curve linearity) 0.2 x v ddq v v oh(ac) ac output high measurement level (for output sr) v tt + 0.1 x v ddq v1 v ol(ac) ac output low measurement level (for output sr) v tt - 0.1 x v ddq v1 differential ac and dc output levels symbol parameter ddr3l-800, 1066, 1333 and 1600 unit notes v ohdiff (ac) ac differential output high measurement
rev. 1.2 /sep. 2013 24 single ended ou tput slew rate when the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between v ol(ac) and v oh(ac) for single ended signals are sh own in table and figure below. notes: 1. output slew rate is verified by design and charac terisation, and may not be subject to production test. single ended output slew rate definition ddr3l-800 ddr3l-1066 ddr3l-1333 ddr3l-1600 units parameter symbol min max min max min max min max single-ended output slew rate srqse 1.75 5 1) 1.75 5 1) 1.75 5 1) 1.75 5 1) v/ns description: sr; slew rate q: query output (like in dq, which stands for data-in, query-output) se: single-ended signals for ron = rzq/7 setting note 1): in two cases, a maximum slew rate of 6v/ns applies for a single dq signal within a byte lane. case 1 is a defined for a single dq signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining dq signals in the same byte lane are static (i.e. they stay at either high or low). case 2 is a defined for a single dq signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining dq signals in the same byte lane switching into the opposite direction (i.e. from low to high of high to low respectively). for the remaining dq signal switching in to the opposite direction, the regular maximum limite of 5 v/ns applies. single-ended output slew rate definition description measured defined by from to single-ended output slew rate for rising edge v ol(ac) v oh(ac) [v oh(ac) -v ol(ac) ] / deltatrse single-ended output slew rate for falling edge v oh(ac) v ol(ac) [v oh(ac) -v ol(ac) ] / deltatfse output slew rate (single-ended) delta tfse delta trse v oh(ac) v ol(ac) v ? single ended output voltage(l.e.dq)
rev. 1.2 /sep. 2013 25 differential output slew rate with the reference load for timing measurements, output slew rate for falling an d rising edges is defined and measured between voldiff (ac) and vohdiff (ac) fo r differential signals as shown in table and figure below. differential output slew rate definition differential output slew rate definition description measured defined by from to differential output slew rate for rising edge v oldiff (ac) v ohdiff (ac) [v ohdiff (ac) -v oldiff (ac) ] / deltatrdiff differential output slew rate for falling edge v ohdiff (ac) v oldiff (ac) [v ohdiff (ac) -v oldiff (ac) ] / deltatfdiff notes: 1. output slew rate is verified by design and charac terization, and may not be su bject to production test. differential output slew rate ddr3l-800 ddr3l-1066 ddr3l-1333 ddr3l-1600 units parameter symbol min max min max min max min max differential output slew rate srqdiff 3.5 12 3.5 12 3.5 12 3.5 12 v/ns description: sr; slew rate q: query output (like in dq, which stands for data-in, query-output) se: single-ended signals for ron = rzq/7 setting delta tfdiff delta trdiff v ohdiff(ac) v oldiff(ac) o differential output voltage(i.e. dqs-dqs)
rev. 1.2 /sep. 2013 26 reference load for ac timing and output slew rate figure below represents the effective reference load of 25 ohms used in defining the relevant ac timing parameters of the device as well as output slew rate measurements. it is not intended as a precise representation of an y particular system environment or a depiction of the actual load presented by a production tester. system de signers should use ibis or other simulation tools to correlate the timing reference load to a system environment. manufacturers correlate to their production test conditions, generally one or more coaxial transm ission lines terminated at the tester electronics. reference load for ac timing and output slew rate dut dq dqs dqs vddq 25 ohm vtt = vddq/2 ck, ck
rev. 1.2 /sep. 2013 27 overshoot and unders hoot specifications address and control overshoot and undershoot specifications address and control overshoo t and undershoot definition ac overshoot/undershoot specification for address and control pins parameter ddr3l- 800 ddr3l- 1066 ddr3l- 1333 ddr3l- 1600 units maximum peak amplitude allowed for overshoot area. (see figure below) 0.4 0.4 0.4 0.4 v maximum peak amplitude allowed for undershoot area. (see figure below) 0.4 0.4 0.4 0.4 v maximum overshoot area above vdd (see figure below) 0.67 0.5 0.4 0.33 v-ns maximum undershoot area below vss (see figure below) 0.67 0.5 0.4 0.33 v-ns (a0-a15, ba0-ba3, cs , ras , cas , we , cke, odt) see figure below for each parameter definition maximum amplitude overshoot area vdd vss maximum amplitude undershoot area time (ns) volts (v)
rev. 1.2 /sep. 2013 28 clock, data, strobe and mask over shoot and undershoot specifications clock, data, strobe and mask ov ershoot and undershoot definition ac overshoot/undershoot specificatio n for clock, data, strobe and mask parameter ddr3l- 800 ddr3l- 1066 ddr3l- 1333 ddr3l- 1600 units maximum peak amplitude allowed for overshoot area. (see figure below) 0.4 0.4 0.4 0.4 v maximum peak amplitude allowed for undershoot area. (see figure below) 0.4 0.4 0.4 0.4 v maximum overshoot area above vdd (see figure below) 0.25 0.19 0.15 0.13 v-ns maximum undershoot area below vss (see figure below) 0.25 0.19 0.15 0.13 v-ns (ck, ck , dq, dqs, dqs , dm) see figure below for each parameter definition maximum amplitude overshoot area vddq vssq maximum amplitude undershoot area time (ns) volts (v)
rev. 1.2 /sep. 2013 29 refresh parameters by device density notes: 1. users should refer to the dram supplier data sheet an d/or the dimm spd to determine if ddr3 sdram devices support the following options or requir ements referred to in this materia. refresh parameters by device density parameter rtt_nom setting 512mb 1gb 2gb 4gb 8gb units ref command act or ref command time trfc 90 110 160 260 350 ns average periodic refresh interval trefi 0 ? c ? t case ? 85 ? c 7.8 7.8 7.8 7.8 7.8 us 85 ? c ? t case ? 95 ? c 3.9 3.9 3.9 3.9 3.9 us
rev. 1.2 /sep. 2013 30 standard speed bins ddr3 sdram standard speed bins include tck, trcd , trp, tras and trc for each corresponding bin. ddr3l-800 speed bins for specific notes see "speed bin table notes" on page 34. speed bin ddr3l-800e unit notes cl - nrcd - nrp 6-6-6 parameter symbol min max internal read command to first data t aa 15 20 ns act to internal read or write delay time t rcd 15 ? ns pre command period t rp 15 ? ns act to act or ref command period t rc 52.5 ? ns act to pre command period t ras 37.5 9 * trefi ns cl = 5 cwl = 5 t ck(avg) 3.0 3.3 ns 1, 2, 3, 4, 10 cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3 supported cl settings 5, 6 n ck 10 supported cwl settings 5 n ck
rev. 1.2 /sep. 2013 31 ddr3l-1066 speed bins for specific notes see "speed bin table notes" on page 34. speed bin ddr3l-1066f unit note cl - nrcd - nrp 7-7-7 parameter symbol min max internal read command to first data t aa 13.125 20 ns act to internal read or write delay time t rcd 13.125 ? ns pre command period t rp 13.125 ? ns act to act or ref command period t rc 50.625 ? ns act to pre command period t ras 37.5 9 * trefi ns cl = 5 cwl = 5 t ck(avg) 3.0 3.3 ns 1, 2, 3, 4, 6, 10 cwl = 6 t ck(avg) reserved ns 4 cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3, 6 cwl = 6 t ck(avg) reserved ns 1, 2, 3, 4 cl = 7 cwl = 5 t ck(avg) reserved ns 4 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4 cl = 8 cwl = 5 t ck(avg) reserved ns 4 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3 supported cl settings 5, 6, 7, 8 n ck 10 supported cwl settings 5, 6 n ck
rev. 1.2 /sep. 2013 32 ddr3l-1333 speed bins for specific notes see "speed bin table notes" on page 34. speed bin ddr3l-1333h unit note cl - nrcd - nrp 9-9-9 parameter symbol min max internal read command to first data t aa 13.5 (13.125) 5,9 20 ns act to internal read or write delay time t rcd 13.5 (13.125) 5,9 ?ns pre command period t rp 13.5 (13.125) 5,9 ?ns act to act or ref command period t rc 49.5 (49.125) 5,9 ?ns act to pre command period t ras 36 9 * trefi ns cl = 5 cwl = 5 t ck(avg) 3.0 3.3 ns 1, 2, 3, 4, 7, 10 cwl = 6, 7 t ck(avg) reserved ns 4 cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3, 7 cwl = 6 t ck(avg) reserved ns 1, 2, 3, 4, 7 cwl = 7 t ck(avg) reserved ns 4 cl = 7 cwl = 5 t ck(avg) reserved ns 4 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 7 (optional) 5,9 cwl = 7 t ck(avg) reserved ns 1, 2, 3, 4 cl = 8 cwl = 5 t ck(avg) reserved ns 4 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 7 cwl = 7 t ck(avg) reserved ns 1, 2, 3, 4 cl = 9 cwl = 5, 6 t ck(avg) reserved ns 4 cwl = 7 t ck(avg) 1.5 <1.875 ns 1, 2, 3, 4 cl = 10 cwl = 5, 6 t ck(avg) reserved ns 4 cwl = 7 t ck(avg) 1.5 <1.875 ns 1, 2, 3 (optional) ns supported cl settings 5, 6,(7), 8, 9, (10) n ck supported cwl settings 5, 6, 7 n ck
rev. 1.2 /sep. 2013 33 ddr3l-1600 speed bins for specific notes see "speed bin table notes" on page 34. speed bin ddr3l-1600k unit note cl - nrcd - nrp 11-11-11 parameter symbol min max internal read command to first data t aa 13.75 (13.125) 5,9 20 ns act to internal read or write delay time t rcd 13.75 (13.125) 5,9 ?ns pre command period t rp 13.75 (13.125) 5,9 ?ns act to act or ref command period t rc 48.75 (48.125) 5,9 ?ns act to pre command period t ras 35 9 * trefi ns cl = 5 cwl = 5 t ck(avg) 3.0 3.3 ns 1, 2, 3, 4, 8, 10 cwl = 6, 7 t ck(avg) reserved ns 4 cl = 6 cwl = 5 t ck(avg) 2.5 3.3 ns 1, 2, 3, 8 cwl = 6 t ck(avg) reserved ns 1, 2, 3, 4, 8 cwl = 7 t ck(avg) reserved ns 4 cl = 7 cwl = 5 t ck(avg) reserved ns 4 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 4, 8 (optional) 5,10 cwl = 7 t ck(avg) reserved ns 1, 2, 3, 4, 8 cwl = 8 t ck(avg) reserved ns 4 cl = 8 cwl = 5 t ck(avg) reserved ns 4 cwl = 6 t ck(avg) 1.875 < 2.5 ns 1, 2, 3, 8 cwl = 7 t ck(avg) reserved ns 1, 2, 3, 4, 8 cwl = 8 t ck(avg) reserved ns 1, 2, 3, 4 cl = 9 cwl = 5, 6 t ck(avg) reserved ns 4 cwl = 7 t ck(avg) 1.5 <1.875 ns 1, 2, 3, 4, 8 (optional) 5,9 cwl = 8 t ck(avg) reserved ns 1, 2, 3, 4 cl = 10 cwl = 5, 6 t ck(avg) reserved ns 4 cwl = 7 t ck(avg) 1.5 <1.875 ns 1, 2, 3, 8 cwl = 8 t ck(avg) reserved ns 1, 2, 3, 4 cl = 11 cwl = 5, 6,7 t ck(avg) reserved ns 4 cwl = 8 t ck(avg) 1.25 <1.5 ns 1, 2, 3 supported cl settings 5, 6, (7), 8, (9), 10, 11 n ck supported cwl settings 5, 6, 7, 8 n ck
rev. 1.2 /sep. 2013 34 speed bin table notes absolute specification (t oper ; v ddq = v dd = 1.35v +/- 0.075 v); 1. the cl setting and cwl setting result in tck(avg).min and tck(avg).max requirements. when mak - ing a selection of tck(avg), both need to be fulfille d: requirements from cl setting as well as require - ments from cwl setting. 2. tck(avg).min limits: since cas latency is not pu rely analog - data and strobe output are synchro - nized by the dll - all possible intermediate freque ncies may not be guaranteed. an application should use the next smaller jedec standard tck(avg) valu e (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculat - ing cl [nck] = taa [ns] / tck(avg) [ns], rounding up to the next ?supported cl?, where tck(avg) = 3.0 ns should only be used for cl = 5 calculation. 3. tck(avg).max limits: calculate tck(avg) = taa.max / cl selected and round the resulting tck(avg) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). this result is tck(avg).max corresponding to cl selected. 4. ?reserved? settings are not allowed. user must program a different value. 5. ?optional? settings allow certain devices in the indust ry to support this setting, however, it is not a man - datory feature. refer to dimm data sheet and/or th e dimm spd information if and how this setting is supported. 6. any ddr3-1066 speed bin also supports functional op eration at lower freque ncies as shown in the table which are not subject to production test s but verified by design/characterization. 7. any ddr3-1333 speed bin also supports functional op eration at lower freque ncies as shown in the table which are not subject to production test s but verified by design/characterization. 8. any ddr3-1600 speed bin also supports functional op eration at lower freque ncies as shown in the table which are not subject to production test s but verified by design/characterization. 9. ddr3 sdram devices supporting optional down binni ng to cl=7 and cl=9, and taa/trcd/trp must be 13.125 ns or lower. spd settings must be programmed to match. for example, ddr3-1333h devices supporting down binning to ddr3-1066f shou ld program 13.125 ns in spd bytes for taamin (byte 16), trcdmin (byte 18), and trpmin (byte 20). ddr3-1600k devices supporting down binning to ddr3-1333h or ddr3-1600f should program 13.125 ns in spd bytes for taamin (byte 16), trcdmin (byte 18), and trpmin (byte 20). once trp (byte 20) is programmed to 13.125ns, trcmin (byte 21,23) also should be programmed accordingly. for example, 49.125ns (trasmin + trpmin = 36 ns + 13.125 ns) for ddr3-1333h and 48.125ns (trasmin + trpmin = 35 ns + 13.125 ns) for ddr3-1600k. 10. for cl5 support, refer to dimm spd information. dram is required to support cl5. cl5 is not manda - tory in spd coding.
rev. 1.2 /sep. 2013 35 environmental parameters note : 1. stress greater than those listed may cause permanent da mage to the device. this is a stress rating only, and device functional operation at or above the conditions in dicated is not implied. expousure to absolute maximum rating conditions for extended periods may affect reliablility. 2. up to 9850 ft. 3. the designer must meet the case temperature sp ecifications for individual module components. symbol parameter rating units notes t opr operating temperature 0 to 65 o c1, 3 h opr operating humidity (relative) 10 to 90 % 1 t stg storage temperature -50 to +100 o c 1 h stg storage humidity (without condensation) 5 to 95 % 1 p bar barometric pressure (operating & storage) 105 to 69 k pascal 1, 2
rev. 1.2 /sep. 2013 36 idd and iddq specification pa rameters and test conditions idd and iddq measurement conditions in this chapter, idd and iddq measur ement conditions such as test load and patterns are defined. figure 1. shows the setup and test load for idd and iddq measurements. ? idd currents (such as idd0, idd1, idd2n, idd2nt, idd2p0, idd2p1, idd2q, idd3n, idd3p, idd4r, idd4w, idd5b, idd6, idd6et and idd7) are measured as time-averaged currents with all vdd balls of the ddr3 sdram under test tied together. any iddq current is not included in idd currents. ? iddq currents (such as iddq2nt and iddq4r) are measured as time-averaged currents with all vddq balls of the ddr3 sdram under test tied toge ther. any idd current is not included in iddq cur - rents. ? ? ? ? ? ?
rev. 1.2 /sep. 2013 37 figure 1 - measurement setup and test load for idd and iddq (optional) measurements [note: dimm level output test load condition may be different from above figure 2 - correlation from simulated channel io power to actual channel io power supported by iddq measurement v dd ddr3l sdram v ddq reset ck/ck dqs, dqs cs ras , cas , we a, ba odt zq v ss v ssq dq, dm, tdqs, tdqs cke r tt = 25 ohm v ddq /2 i dd i ddq (optional) application specific memory channel environment channel io power simulation iddq simulation iddq simulation channel io power number iddq test load correction
rev. 1.2 /sep. 2013 38 table 1 -timings used for idd an d iddq measurement-loop patterns table 2 -basic idd and id dq measurement conditions symbol ddr3l-1066 ddr3l-1333 ddr3l-1600 unit 7-7-7 9-9-9 11-11-11 t ck 1.875 1.5 1.25 ns cl 7 9 11 nck n rcd 7911nck n rc 27 33 39 nck n ras 20 24 28 nck n rp 7911nck n faw 1kb page size 20 20 24 nck 2kb page size 27 30 32 nck n rrd 1kb page size 4 4 5 nck 2kb page size 6 5 6 nck n rfc -512mb 486072nck n rfc -1 gb 59 74 88 nck n rfc - 2 gb 86 107 128 nck n rfc - 4 gb 139 174 208 nck n rfc - 8 gb 187 234 280 nck symbol description i dd0 operating one bank active-precharge current ? i dd1 operating one bank active-precharge current cke: high; external clock: on; tck, nrc, nras, nrcd, cl: see table 1; bl: 8 a) ; al: 0; cs : high between act, rd and pre; command, address; bank address inputs, da ta io: partially toggling according to table 4; dm: stable at 0; bank activity: cycling with on bank active at a time: 0,0,1,1,2,2,... (see table 4); output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0; pattern details: see table 4.
rev. 1.2 /sep. 2013 39 i dd2n precharge standby current cke: high; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: partially toggling according to table 5; da ta io: mid_level; dm: stable at 0; bank activity: all banks closed; output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0; pattern details: see table 5. i dd2nt precharge standby odt current cke: high; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: partially toggling according to table 6; da ta io: mid_level; dm: stable at 0; bank activity: all banks closed; output buffer and rtt: enabled in mode registers b) ; odt signal: toggling according to table 6; pattern details: see table 6. i dd2p0 precharge power-down current slow exit cke: low; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: stable at 0; data io: mid_level; dm: stable at 0; bank activity: all banks closed; output buf- fer and rtt: enabled in mode registers b) ; odt signal: stable at 0; precharge power down mode: slow exit c) i dd2p1 precharge power-down current fast exit cke: low; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: stable at 0; data io: mid_level; dm: stable at 0; bank activity: all banks closed; output buf- fer and rtt: enabled in mode registers b) ; odt signal: stable at 0; precharge power down mode: fast exit c) i dd2q precharge quiet standby current cke: high; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: stable at 0; data io: mid_level; dm: stable at 0; bank activity: all banks closed; output buf- fer and rtt: enabled in mode registers b) ; odt signal: stable at 0 i dd3n active standby current cke: high; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: partially toggling according to table 5; da ta io: mid_level; dm: stable at 0; bank activity: all banks open; output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0; pattern details: see table 5. i dd3p active power-down current cke: low; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : stable at 1; command, address, bank address inputs: stable at 0; data io: mid_level; dm: stable at 0; bank activity: all banks open; output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0 symbol description
rev. 1.2 /sep. 2013 40 i dd4r operating burst read current cke: high; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : high between rd; command, address, bank address inputs: partially toggling according to table 7; data io: seam less read data burst with different data between one burst and the next one according to tabl e 7; dm: stable at 0; bank activity: all banks open, rd commands cycling through banks: 0, 0,1,1,2,2,...(see table 7); output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0; pattern details: see table 7. i dd4w operating burst write current cke: high; external clock: on; tck, cl: see table 1; bl: 8 a) ; al: 0; cs : high between wr; command, address, bank address inputs: partially toggling according to table 8; data io: seam less read data burst with different data between one burst and the next one according to tabl e 8; dm: stable at 0; bank activity: all banks open, wr commands cycling through banks: 0,0,1,1,2,2,...(see table 8); output buffer and rtt: enabled in mode registers b) ; odt signal: stable at high; pattern details: see table 8. i dd5b burst refresh current cke: high; external clock: on; tck, cl, nrfc: see table 1; bl: 8 a) ; al: 0; cs : high between ref; command, address, bank address inputs: partially toggling accordin g to table 9; data io: mid_level; dm: stable at 0; bank activity: ref command every nref (see table 9); output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0; pattern details: see table 9. i dd6 self-refresh current: normal temperature range t case : 0 - 85 o c; auto self-refresh (asr): disabled d) ;self-refresh temperature range (srt): normal e) ; cke: low; external clock: off; ck and ck : low; cl: see table 1; bl: 8 a) ; al: 0; cs , command, address, bank address inputs, data io: mid_level; dm: stable at 0; bank activity: self-refresh operation; output buffer and rtt: enabled in mode registers b) ; odt signal: mid_level i dd6et self-refresh current: extended temperature range t case : 0 - 95 o c; auto self-refresh (asr): disabled d) ;self-refresh temperature range (srt): extended e) ; cke: low; external clock: off; ck and ck : low; cl: see table 1; bl: 8 a) ; al: 0; cs , command, address, bank address inputs, data io: mid_level; dm: stable at 0; bank activity: extended temperature self-refresh operation; output buffer and rtt: enabled in mode registers b) ; odt signal: mid_level symbol description
rev. 1.2 /sep. 2013 41 a) burst length: bl8 fixed by mrs: set mr0 a[1,0]=00b b) output buffer enable: set mr1 a[12] = 0b; set mr1 a[ 5,1] = 01b; rtt_nom enable: set mr1 a[9,6,2] = 011b; rtt_wr enable: set mr2 a[10,9] = 10b c) precharge power down mode: set mr0 a12=0b for slow exit or mr0 a12 = 1b for fast exit d) auto self-refresh (asr): set mr2 a6 = 0b to disable e) self-refresh temperature range (srt): set mr2 a7 = 0b for normal or 1b for extended temperature range f) read burst type: nibble sequential, set mr0 a[3] = 0b i dd7 operating bank interleave read current cke: high; external clock: on; tck, nrc, nras, nrcd, nrrd, nfaw, cl: see table 1; bl: 8 a,f) ; al: cl-1; cs : high between act and rda; command, address, bank address inputs: partially toggling according to table 10; data io: read data burst with different data betw een one burst and the next one according to table 10; dm: stable at 0; bank activity: two times interleaved cycling through banks (0, 1,.. .7) with different address- ing, wee table 10; output buffer and rtt: enabled in mode registers b) ; odt signal: stable at 0; pattern details: see table 10. symbol description
rev. 1.2 /sep. 2013 42 table 3 - idd0 measurement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are mid-level. b) dq signals are mid-level. ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 act 0 0 1 1 0 0 00 0 0 0 0 - 1,2 d, d 1 0 0 0 0 0 00 0 0 0 0 - 3,4 d , d 1111 0 0000 0 0 0 - ... repeat pattern 1...4 until nr as - 1, truncate if necessary nras pre 0 0 1 0 0 0 00 0 0 0 0 - ... repeat pattern 1...4 until nrc - 1, truncate if necessary 1*nrc+0 act 0 0 1 1 0 0 00 0 0 f 0 - 1*nrc+1, 2 d, d 1 0 0 0 0 0 00 0 0 f 0 - 1*nrc+3, 4 d , d 1111 0 0000 0 f 0 - ... repeat pattern 1...4 until 1*nrc + nras - 1, truncate if necessary 1*nrc+nras pre 0 0 1 0 0 0 00 0 0 f 0 - ... repeat pattern 1...4 until 2*nrc - 1, truncate if necessary 1 2*nrc repeat sub-loop 0, use ba[2:0] = 1 instead 2 4*nrc repeat sub-loop 0, use ba[2:0] = 2 instead 3 6*nrc repeat sub-loop 0, use ba[2:0] = 3 instead 4 8*nrc repeat sub-loop 0, use ba[2:0] = 4 instead 5 10*nrc repeat sub-loop 0, use ba[2:0] = 5 instead 6 12*nrc repeat sub-loop 0, use ba[2:0] = 6 instead 7 14*nrc repeat sub-loop 0, use ba[2:0] = 7 instead
rev. 1.2 /sep. 2013 43 table 4 - idd1 measurement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are used according to rd commands, otherwise mid-level. b) burst sequence driven on each dq signal by read co mmand. outside burst operatio n, dq signals are mid_level. ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 act001100000000 - 1,2 d, d 1 0 0 0 0 0 00 0 0 0 0 - 3,4 d , d 111100000000 - ... repeat pattern 1...4 until nrcd - 1, truncate if necessary nrcd rd 0 1 0 1 0 0 00 0 0 0 0 00000000 ... repeat pattern 1...4 until nras - 1, truncate if necessary nras pre001000000000 - ... repeat pattern 1...4 until nrc - 1, truncate if necessary 1*nrc+0 act 0 0 1 1 0 0 00 0 0 f 0 - 1*nrc+1,2 d, d 1 0 0 0 0 0 00 0 0 f 0 - 1*nrc+3,4 d , d 1111000000f0 - ... repeat pattern nrc + 1,...4 until nrc + nrce - 1, truncate if necessary 1*nrc+nrcd rd 0 1 0 1 0 0 00 0 0 f 0 00110011 ... repeat pattern nrc + 1,...4 until nr c + nras - 1, truncate if necessary 1*nrc+nras pre 0 0 1 0 0 0 00 0 0 f 0 - ... repeat pattern nrc + 1,...4 until *2 nrc - 1, truncate if necessary 1 2*nrc repeat sub-loop 0, use ba[2:0] = 1 instead 2 4*nrc repeat sub-loop 0, use ba[2:0] = 2 instead 3 6*nrc repeat sub-loop 0, use ba[2:0] = 3 instead 4 8*nrc repeat sub-loop 0, use ba[2:0] = 4 instead 5 10*nrc repeat sub-loop 0, use ba[2:0] = 5 instead 6 12*nrc repeat sub-loop 0, use ba[2:0] = 6 instead 7 14*nrc repeat sub-loop 0, use ba[2:0] = 7 instead
rev. 1.2 /sep. 2013 44 table 5 - idd2n and idd3n measurement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are mid-level. b) dq signals are mid-level. table 6 - idd2nt and iddq2n t measurement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are mid-level. b) dq signals are mid-level. ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 d10000000000 - 1d10000000000- 2d 1111 0 0 0 0 0 f 0 - 3d 1111 0 0 0 0 0 f 0 - 1 4-7 repeat sub-loop 0, use ba[2:0] = 1 instead 2 8-11 repeat sub-loop 0, use ba[2:0] = 2 instead 3 12-15 repeat sub-loop 0, use ba[2:0] = 3 instead 4 16-19 repeat sub-loop 0, use ba[2:0] = 4 instead 5 20-23 repeat sub-loop 0, use ba[2:0] = 5 instead 6 24-17 repeat sub-loop 0, use ba[2:0] = 6 instead 7 28-31 repeat sub-loop 0, use ba[2:0] = 7 instead ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 d10000000000 - 1d10000000000- 2d 1111 0 0 0 0 0 f 0 - 3d 1111 0 0 0 0 0 f 0 - 1 4-7 repeat sub-loop 0, but odt = 0 and ba[2:0] = 1 2 8-11 repeat sub-loop 0, but odt = 1 and ba[2:0] = 2 3 12-15 repeat sub-loop 0, but odt = 1 and ba[2:0] = 3 4 16-19 repeat sub-loop 0, but odt = 0 and ba[2:0] = 4 5 20-23 repeat sub-loop 0, but odt = 0 and ba[2:0] = 5 6 24-17 repeat sub-loop 0, but odt = 1 and ba[2:0] = 6 7 28-31 repeat sub-loop 0, but odt = 1 and ba[2:0] = 7
rev. 1.2 /sep. 2013 45 table 7 - idd4r and iddq4r measurement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are used according to rd commands, otherwise mid-level. b) burst sequence driven on each dq signal by read co mmand. outside burst operatio n, dq signals are mid-level. table 8 - idd4w measurement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are used according to wr commands, otherwise mid-level. b) burst sequence driven on each dq signal by write co mmand. outside burst operation, dq signals are mid-level. ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 rd 0 1 0 1 0 0 00 0 0 0 0 00000000 1d100000000000- 2,3 d ,d 1111 0 0000 0 0 0 - 4 rd 0 1 0 1 0 0 00 0 0 f 0 00110011 5d1000000000f0- 6,7 d ,d 1111 0 0000 0 f 0 - 1 8-15 repeat sub-loop 0, but ba[2:0] = 1 2 16-23 repeat sub-loop 0, but ba[2:0] = 2 3 24-31 repeat sub-loop 0, but ba[2:0] = 3 4 32-39 repeat sub-loop 0, but ba[2:0] = 4 5 40-47 repeat sub-loop 0, but ba[2:0] = 5 6 48-55 repeat sub-loop 0, but ba[2:0] = 6 7 56-63 repeat sub-loop 0, but ba[2:0] = 7 ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 wr 0 1 0 0 1 0 00 0 0 0 0 00000000 1d100010000000- 2,3 d ,d 1111 1 0000 0 0 0 - 4 wr 0 1 0 0 1 0 00 0 0 f 0 00110011 5d1000100000f0- 6,7 d ,d 1111 1 0000 0 f 0 - 1 8-15 repeat sub-loop 0, but ba[2:0] = 1 2 16-23 repeat sub-loop 0, but ba[2:0] = 2 3 24-31 repeat sub-loop 0, but ba[2:0] = 3 4 32-39 repeat sub-loop 0, but ba[2:0] = 4 5 40-47 repeat sub-loop 0, but ba[2:0] = 5 6 48-55 repeat sub-loop 0, but ba[2:0] = 6 7 56-63 repeat sub-loop 0, but ba[2:0] = 7
rev. 1.2 /sep. 2013 46 table 9 - idd5b measur ement-loop pattern a) a) dm must be driven low all the time. dqs, dqs are mid-level. b) dq signals are mid-level. ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 ref 0 0 0 1 0 0 0 0 0 0 0 - 11.2 d, d 1 0 0 0 0 0 00 0 0 0 0 - 3,4 d , d 1111 0 0000 0 f 0 - 5...8 repeat cycles 1...4, but ba[2:0] = 1 9...12 repeat cycles 1...4, but ba[2:0] = 2 13...16 repeat cycles 1...4, but ba[2:0] = 3 17...20 repeat cycles 1...4, but ba[2:0] = 4 21...24 repeat cycles 1...4, but ba[2:0] = 5 25...28 repeat cycles 1...4, but ba[2:0] = 6 29...32 repeat cycles 1...4, but ba[2:0] = 7 2 33...nrfc-1 repeat sub-loop 1, until nrfc - 1. truncate, if necessary.
rev. 1.2 /sep. 2013 47 table 10 - idd7 meas urement-loop pattern a) attention! sub-loops 10-19 have inverse a[6:3] pattern and data pattern than sub-loops 0-9 ck, ck cke sub-loop cycle number command cs ras cas we odt ba[2:0] a[15:11] a[10] a[9:7] a[6:3] a[2:0] data b) toggling static high 0 0 act 0 0 1 1 0 0 00 0 0 0 0 - 1 rda 0 1 0 1 0 0 00 1 0 0 0 00000000 2 d 1 0 0 0 0 0 00 0 0 0 0 - ... repeat above d command until nrrd - 1 1 nrrd act 0 0 1 1 0 1 00 0 0 f 0 - nrrd+1 rda 0 1 0 1 0 1 00 1 0 f 0 00110011 nrrd+2 d 1 0 0 0 0 1 00 0 0 f 0 - ... repeat above d command until 2* nrrd - 1 2 2*nrrd repeat sub-loop 0, but ba[2:0] = 2 3 3*nrrd repeat sub-loop 1, but ba[2:0] = 3 4 4*nrrd d 1 0 0 0 0 3 00 0 0 f 0 - assert and repeat abov e d comman d until nfaw - 1, if necessary 5 nfaw repeat sub-loop 0, but ba[2:0] = 4 6 nfaw+nrrd repeat sub-loop 1, but ba[2:0] = 5 7 nfaw+2*nrrd repeat sub-loop 0, but ba[2:0] = 6 8 nfaw+3*nrrd repeat sub-loop 1, but ba[2:0] = 7 9 nfaw+4*nrrd d 1 0 0 0 0 7 00 0 0 f 0 - assert and repeat abov e d command until 2* nfaw - 1, if necessary 10 2*nfaw+0 act 0 0 1 1 0 0 00 0 0 f 0 - 2*nfaw+1 rda 0 1 0 1 0 0 00 1 0 f 0 00110011 2&nfaw+2 d 1 0 0 0 0 0 00 0 0 f 0 - repeat above d command until 2* nfaw + nrrd - 1 11 2*nfaw+nrrd act 0 0 1 1 0 1 00 0 0 0 0 - 2*nfaw+nrrd+1 rda 0 1 0 1 0 1 00 1 0 0 0 00000000 2&nfaw+nrrd+2 d 1 0 0 0 0 1 00 0 0 0 0 - repeat above d command until 2* nfaw + 2* nrrd - 1 12 2*nfaw+2*nrrd repeat sub-loop 10, but ba[2:0] = 2 13 2*nfaw+3*nrrd repeat sub-loop 11, but ba[2:0] = 3 14 2*nfaw+4*nrrd d 1 0 0 0 0 3 00 0 0 0 0 - assert and repeat abov e d command until 3* nfaw - 1, if necessary 15 3*nfaw repeat sub-loop 10, but ba[2:0] = 4 16 3*nfaw+nrrd repeat sub-loop 11, but ba[2:0] = 5 17 3*nfaw+2*nrrd repeat sub-loop 10, but ba[2:0] = 6 18 3*nfaw+3*nrrd repeat sub-loop 11, but ba[2:0] = 7 19 3*nfaw+4*nrrd d 1 0 0 0 0 7 00 0 0 0 0 - assert and repeat abov e d command until 4* nfaw - 1, if necessary a) dm must be driven low all the time. dqs, dqs are used according to rd commands, otherwise mid-level. b) burst sequence driven on each dq signal by read co m mand. outside burst operatio n, dq signals are mid-level.
rev. 1.2 /sep. 2013 48 idd specifications (tcase: 0 to 95 o c) * module idd values in the datasheet are only a calculation based on the component idd spec. ? 2gb, 256m x 64 so-d imm: hmt325s6efr8a 4gb, 512m x 64 so-d imm: HMT351S6EFR8A symbol ddr3l 1066 ddr3l 1333 ddr3l 1600 unit note idd0 208 224 224 ma idd1 256 272 272 ma idd2n 104 120 128 ma idd2nt 128 144 160 ma idd2p0 80 80 80 ma idd2p1 104 104 104 ma idd2q 112 120 136 ma idd3n 144 144 160 ma idd3p 96 96 96 ma idd4r 424 504 584 ma idd4w 440 520 600 ma idd5b 1280 1280 1280 ma idd6 80 80 80 ma idd6et 96 96 96 ma idd7 840 928 936 ma symbol ddr3l 1066 ddr3l 1333 ddr3l 1600 unit note idd0 312 344 384 ma idd1 360 392 432 ma idd2n 208 240 256 ma idd2nt 256 288 320 ma idd2p0 160 160 160 ma idd2p1 208 208 208 ma idd2q 224 240 272 ma idd3n 288 288 320 ma idd3p 192 192 192 ma idd4r 528 624 744 ma idd4w 544 640 760 ma idd5b 1384 1400 1440 ma idd6 160 160 160 ma idd6et 192 192 192 ma idd7 944 1048 1096 ma
rev. 1.2 /sep. 2013 49 module dimensions 256mx64 - hmt325s6efr8a front back spd 30.0mm 67.60mm 20.0mm 6.00 2.0 21.00 39.00 2.15 3.00 pin 1 pin 203 detail-a 3.37mm max 4.00 0.10 ? ? ? ? ? note : 1. tolerance on all dimensions unless otherwise stated. 0.13 ? units: millimeters side 2.55 1.00 detail of contacts a 0.3 0.3~1.0 0.15 ? 0.05 ? 0.45 0.03 ? 4.00 0.10 ? 0.60
rev. 1.2 /sep. 2013 50 512mx64 - HMT351S6EFR8A front back 30.0mm 67.60mm 20.0mm 6.00 2.0 21.00 39.00 2.15 3.00 pin 1 pin 203 detail- a spd 3.37mm max detail-b 4.00 0.10 ? ? ? ? ? side note : 1. tolerance on all dimensions unless otherwise stated. 0.13 ? units: millimeters 2.55 1.00 detail of contacts a 0.3 0.3~1.0 0.15 ? 0.05 ? 0.45 0.03 ? 4.00 0.10 ? 0.60


▲Up To Search▲   

 
Price & Availability of HMT351S6EFR8A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X